下面我们选取几个示例来说明。
1. 条件字段函数操作
假设你现在维护了一个交易系统,其中交易记录表 tradelog 包含交易流水号 (tradeid)、交易员 id(operator)、交易时间(t_modified)等字段。为了便于描述, 我们先忽略其他字段。这个表的建表语句如下:
1 | CREATE TABLE `tradelog` ( |
假设,现在已经记录了从 2016 年初到 2018 年底的所有数据,运营部门有一个需求是,要统计发生在所有年份中 7 月份的交易记录总数。这个逻辑看上去并不复杂,你的 SQL 语句可能会这么写:
1 | select count(*) from tradelog where month(t_modified)=7; |
由于 t_modified 字段上有索引,于是你就很放心地在生产库中执行了这条语句,但却发现 执行了特别久,才返回了结果。原因是对字段做了函数计 算,就用不上索引了。那为什么条件是 where t_modified=’2018-7-1’的时候可以用上索引,而改成 where month(t_modified)=7 的 时候就不行了?
下面是这个 t_modified 索引的示意图。方框上面的数字就是 month() 函数对应的值。
如果你的 SQL 语句条件用的是 where t_modified=’2018-7-1’的话,引擎就会按照上面绿色箭头的路线,快速定位到 t_modified=’2018-7-1’需要的结果。实际上,B+ 树提供的这个快速定位能力,来源于同一层兄弟节点的有序性。但是,如果计算 month() 函数的话,你会看到传入 7 的时候,在树的第一层就不知道该怎么办了。
也就是说,对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃走树搜索功能。
需要注意的是,优化器并不是要放弃使用这个索引。在这个例子里,放弃了树搜索功能,优化器可以选择遍历主键索引,也可以选择遍历索引 t_modified,优化器对比索引大小后发现,索引 t_modified 更小,遍历这个索引比遍历主键索引来得更快。因此最终还是会选择索引 t_modified。
接下来,我们使用 explain 命令,查看一下这条 SQL 语句的执行结果。
key=”t_modified”表示的是,使用了 t_modified 这个索引;我在测试表数据中插入了 10 万行数据,rows=100335,说明这条语句扫描了整个索引的所有值;Extra 字段的 Using index,表示的是使用了覆盖索引。
也就是说,由于在 t_modified 字段加了 month() 函数操作,导致了全索引扫描。为了能 够用上索引的快速定位能力,我们就要把 SQL 语句改成基于字段本身的范围查询。按照下 面这个写法,优化器就能按照我们预期的,用上 t_modified 索引的快速定位能力了。
1 | SELECT |
当然,如果你的系统上线时间更早,或者后面又插入了之后年份的数据的话,你就需要再把其他年份补齐。
到这里我给你说明了,由于加了 month() 函数操作,MySQL 无法再使用索引快速定位功能,而只能使用全索引扫描。不过优化器在个问题上确实有“偷懒”行为,即使是对于不改变有序性的函数,也不会考虑使用索引。比如,对于 select * from tradelog where id + 1 = 10000 这个 SQL 语句, 这个加 1 操作并不会改变有序性,但是 MySQL 优化器还是不能用 id 索引快速定位到 9999 这一行。所以,需要你在写 SQL 语句的时候,手动改写成 where id = 10000 -1 才可以。
2. 隐式类型转换
我们一起看一下这条 SQL 语句:
1 | select * from tradelog where tradeid=110717; |
交易编号 tradeid 这个字段上,本来就有索引,但是 explain 的结果却显示,这条语句需要走全表扫描。你可能也发现了,tradeid 的字段类型是 varchar(32),而输入的参数却是整型,所以需要做类型转换。那么,为什么有数据类型转换,就需要走全索引扫描?在 MySQL 中,字符串和数字做比较的话,是将字符串转换成数字。
这时,你再看上述全表扫描的语句,就知道对于优化器来说,这个语句相当于:
1 | select * from tradelog where CAST(tradid AS signed int) = 110717; |
也就是说,这条语句触发了我们上面说到的规则:对索引字段做函数操作,优化器会放弃走树搜索功能。
3. 隐式字符编码转换
假设系统里还有另外一个表 trade_detail,用于记录交易的操作细节。为了便于量化分析和复现,我往交易日志表 tradelog 和交易详情表 trade_detail 这两个表里插入一些数据。
1 | CREATE TABLE `trade_detail` ( |
这时候,如果要查询 id=2 的交易的所有操作步骤信息,SQL 语句可以这么写:
1 | select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2; |
我们一起来看下这个结果:
- 第一行显示优化器会先在交易记录表 tradelog 上查到 id=2 的行,这个步骤用上了主键索引,rows=1 表示只扫描一行;
- 第二行 key=NULL,表示没有用上交易详情表 trade_detail 上的 tradeid 索引,进行了全表扫描。
在这个执行计划里,是从 tradelog 表中取 tradeid 字段,再去 trade_detail 表里查询匹配字段。因此,我们把 tradelog 称为驱动表,把 trade_detail 称为被驱动表,把 tradeid 称为关联字段。
接下来,我们看下这个 explain 结果表示的执行流程:
图中:
第 1 步,是根据 id 在 tradelog 表里找到 L2 这一行;
第 2 步,是从 L2 中取出 tradeid 字段的值;
第 3 步,是根据 tradeid 值到 trade_detail 表中查找条件匹配的行。explain 的结果里面第二行的 key=NULL 表示的就是,这个过程是通过遍历主键索引的方式,一个一个地判断 tradeid 的值是否匹配。
进行到这里,你会发现第 3 步不符合我们的预期。因为表 trade_detail 里 tradeid 字段上是有索引的,我们本来是希望通过使用 tradeid 索引能够快速定位到等值的行。但,这里并没有。
原因是为这两个表的字符集不同,一个是 utf8,一 个是 utf8mb4,所以做表连接查询的时候用不上关联字段的索引。但是,为什么字符集不同就用不上索引呢?
我们说问题是出在执行步骤的第 3 步,如果单独把这一步改成 SQL 语句的话,那就是:
1 | select * from trade_detail where tradeid = $L2.tradeid.value; |
其中,$L2.tradeid.value 的字符集是 utf8mb4。参照前面的两个例子,你肯定就想到了,字符集 utf8mb4 是 utf8 的超集,所以当这两个类型的字符串在做比较的时候,MySQL 内部的操作是,先把 utf8 字符串转成 utf8mb4 字 符集,再做比较。
因此, 在执行上面这个语句的时候,需要将被驱动数据表里的字段一个个地转换成 utf8mb4,再跟 L2 做比较。也就是说,实际上这个语句等同于下面这个写法:
1 | select * from trade_detail where CONVERT(traideid USING utf8mb4) = $L2.tradeid.value; |
CONVERT() 函数,在这里的意思是把输入的字符串转成 utf8mb4 字符集。这就再次触发了我们上面说到的原则:对索引字段做函数操作,优化器会放弃走树搜索功能。
到这里,你终于明确了,字符集不同只是条件之一,连接过程中要求在被驱动表的索引字段上加函数操作,是直接导致对被驱动表做全表扫描的原因。
作为对比验证,我给你提另外一个需求,“查找 trade_detail 表里 id=4 的操作,对应的操作者是谁”,再来看下这个语句和它的执行计划。
1 | select l.operator from tradelog l, trade_detail d where d.tradeid=l.tradeid and d.id=4; |
这个语句里 trade_detail 表成了驱动表,但是 explain 结果的第二行显示,这次的查询操作用上了被驱动表 tradelog 里的索引 (tradeid),扫描行数是 1。
这也是两个 tradeid 字段的 join 操作,为什么这次能用上被驱动表的 tradeid 索引呢?我们来分析一下。
假设驱动表 trade_detail 里 id=4 的行记为 R4,那么在连接的时候(图 5 的第 3 步),被 驱动表 tradelog 上执行的就是类似这样的 SQL 语句:
1 | select operator from tradelog where traideid =$R4.tradeid.value; |
这时候 $R4.tradeid.value 的字符集是 utf8, 按照字符集转换规则,要转成 utf8mb4,所以这个过程就被改写成:
1 | select operator from tradelog where traideid =CONVERT($R4.tradeid.value USING utf8mb4) |
你看,这里的 CONVERT 函数是加在输入参数上的,这样就可以用上被驱动表的 traideid 索引。理解了原理以后,就可以用来指导操作了。如果要优化语句
1 | select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2; |
的执行过程,有两种做法:
比较常见的优化方法是,把 trade_detail 表上的 tradeid 字段的字符集也改成 utf8mb4,这样就没有字符集转换的问题了。
1 | alter table trade_detail modify tradeid varchar(32) CHARACTER SET utf8mb4 default null; |
如果能够修改字段的字符集的话,是最好不过了。但如果数据量比较大, 或者业务上暂时不能做这个 DDL 的话,那就只能采用修改 SQL 语句的方法了。
1 | select d.* from tradelog l , trade_detail d where d.tradeid=CONVERT(l.tradeid USIG utf8) and l.id=2; |
这里,我主动把 l.tradeid 转成 utf8,就避免了被驱动表上的字符编码转换,从 explain 结 果可以看到,这次索引走对了。