0%

设计模式-设计实现一个集群环境下的分布式单例模式

今天,我们扩展延伸一块讨论一下下面这几个问题:

  • 如何理解单例模式中的唯一性?
  • 如何实现线程唯一的单例?
  • 如何实现集群环境下的单例?
  • 如何实现一个多例模式?

如何理解单例模式中的唯一性?

首先,我们重新看一下单例的定义:“一个类只允许创建唯一一个对象(或者实例),那这个类就是一个单例类,这种设计模式就叫作单例设计模式,简称单例模式。”

定义中提到,“一个类只允许创建唯一一个对象”。那对象的唯一性的作用范围是什么呢? 是指线程内只允许创建一个对象,还是指进程内只允许创建一个对象?答案是后者,也就是说,单例模式创建的对象是进程唯一的。这里有点不好理解,我来详细地解释一下。

我们编写的代码,通过编译、链接,组织在一起,就构成了一个操作系统可以执行的文件, 也就是我们平时所说的“可执行文件”(比如 Windows 下的 exe 文件)。可执行文件实际上就是代码被翻译成操作系统可理解的一组指令,你完全可以简单地理解为就是代码本身。

当我们使用命令行或者双击运行这个可执行文件的时候,操作系统会启动一个进程,将这个执行文件从磁盘加载到自己的进程地址空间(可以理解操作系统为进程分配的内存存储区, 用来存储代码和数据)。接着,进程就一条一条地执行可执行文件中包含的代码。比如,当进程读到代码中的 User user = new User(); 这条语句的时候,它就在自己的地址空间中创建一个 user 临时变量和一个 User 对象。

进程之间是不共享地址空间的,如果我们在一个进程中创建另外一个进程(比如,代码中有 一个 fork() 语句,进程执行到这条语句的时候会创建一个新的进程),操作系统会给新进程分配新的地址空间,并且将老进程地址空间的所有内容,重新拷贝一份到新进程的地址空间中,这些内容包括代码、数据(比如 user 临时变量、User 对象)。

所以,单例类在老进程中存在且只能存在一个对象,在新进程中也会存在且只能存在一个对象。而且,这两个对象并不是同一个对象,这也就说,单例类中对象的唯一性的作用范围是进程内的,在进程间是不唯一的。

如何实现线程唯一的单例?

刚刚我们讲了单例类对象是进程唯一的,一个进程只能有一个单例对象。那如何实现一个线程唯一的单例呢?

我们先来看一下,什么是线程唯一的单例,以及“线程唯一”和“进程唯一”的区别。

“进程唯一”指的是进程内唯一,进程间不唯一。类比一下,“线程唯一”指的是线程内唯 一,线程间可以不唯一。实际上,“进程唯一”还代表了线程内、线程间都唯一,这也是“进程唯一”和“线程唯一”的区别之处。这段话听起来有点像绕口令,我举个例子来解释一下。

假设 IdGenerator 是一个线程唯一的单例类。在线程 A 内,我们可以创建一个单例对象 a。因为线程内唯一,在线程 A 内就不能再创建新的 IdGenerator 对象了,而线程间可以不唯一,所以,在另外一个线程 B 内,我们还可以重新创建一个新的单例对象 b。

尽管概念理解起来比较复杂,但线程唯一单例的代码实现很简单,如下所示。在代码中,我们通过一个 HashMap 来存储对象,其中 key 是线程 ID,value 是对象。这样我们就可以做到,不同的线程对应不同的对象,同一个线程只能对应一个对象。实际上,Java 语言本 身提供了 ThreadLocal 工具类,可以更加轻松地实现线程唯一单例。不过,ThreadLocal 底层实现原理也是基于下面代码中所示的 HashMap。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class IdGenerator {
private AtomicLong id = new AtomicLong(0);
private static final ConcurrentHashMap<Long, IdGenerator> instances = new ConcurrentHashMap<>();
private IdGenerator() {}
public static IdGenerator getInstance() {
Long currentThreadId = Thread.currentThread().getId();
// 线程ID不一样就存入新的实例
instances.putIfAbsent(currentThreadId, new IdGenerator());
return instances.get(currentThreadId);
}
public long getId() {
return id.incrementAndGet();
}
}

如何实现集群环境下的单例?

刚刚我们讲了“进程唯一”的单例和“线程唯一”的单例,现在,我们再来看下,“集群唯 一”的单例。

首先,我们还是先来解释一下,什么是“集群唯一”的单例。

我们还是将它跟“进程唯一”“线程唯一”做个对比。“进程唯一”指的是进程内唯一、进程间不唯一。“线程唯一”指的是线程内唯一、线程间不唯一。集群相当于多个进程构成的一个集合,“集群唯一”就相当于是进程内唯一、进程间也唯一。也就是说,不同的进程间共享同一个对象,不能创建同一个类的多个对象。

我们知道,经典的单例模式是进程内唯一的,那如何实现一个进程间也唯一的单例呢?如果严格按照不同的进程间共享同一个对象来实现,那集群唯一的单例实现起来就有点难度了。

具体来说,我们需要把这个单例对象序列化并存储到外部共享存储区(比如文件)。进程在使用这个单例对象的时候,需要先从外部共享存储区中将它读取到内存,并反序列化成对象,然后再使用,使用完成之后还需要再存储回外部共享存储区。

为了保证任何时刻,在进程间都只有一份对象存在,一个进程在获取到对象之后,需要对对象加锁,避免其他进程再将其获取。在进程使用完这个对象之后,还需要显式地将对象从内存中删除,并且释放对对象的加锁。

按照这个思路,我用伪代码实现了一下这个过程,具体如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public class IdGenerator {
private AtomicLong id = new AtomicLong(0);
private static IdGenerator instance;
// 外部共享存储区
private static SharedObjectStorage storage = FileSharedObjectStorage(/*入参省略*/);
// 分布式锁
private static DistributedLock lock = new DistributedLock();
private IdGenerator() {}
public synchronized static IdGenerator getInstance() {
if (instance == null) {
// 1. 分布式锁加锁
lock.lock();
// 2. 外部共享存储区加载类到内存
instance = storage.load(IdGenerator.class);
}
return instance;
}
public synchroinzed void freeInstance() {
// 3. 使用完实例类后重新存入外部共享存储区
storage.save(this, IdGeneator.class);
// 4. 释放对象
instance = null;
// 5. 分布式锁释放锁
lock.unlock();
}
public long getId() {
return id.incrementAndGet();
}
}
// IdGenerator使用举例
IdGenerator idGeneator = IdGenerator.getInstance();
long id = idGenerator.getId();
IdGenerator.freeInstance();

如何实现一个多例模式?

跟单例模式概念相对应的还有一个多例模式。那如何实现一个多例模式呢?

“单例”指的是,一个类只能创建一个对象。对应地,“多例”指的就是,一个类可以创建多个对象,但是个数是有限制的,比如只能创建 3 个对象。如果用代码来简单示例一下的话,就是下面这个样子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public class BackendServer {
private long serverNo;
private String serverAddress;
private static final int SERVER_COUNT = 3;
private static final Map<Long, BackendServer> serverInstances = new HashMap<>();
static {
serverInstances.put(1L, new BackendServer(1L, "192.134.22.138:8080"));
serverInstances.put(2L, new BackendServer(2L, "192.134.22.139:8080"));
serverInstances.put(3L, new BackendServer(3L, "192.134.22.140:8080"));
}
private BackendServer(long serverNo, String serverAddress) {
this.serverNo = serverNo;
this.serverAddress = serverAddress;
}
public BackendServer getInstance(long serverNo) {
return serverInstances.get(serverNo);
}
public BackendServer getRandomInstance() {
Random r = new Random();
int no = r.nextInt(SERVER_COUNT)+1;
return serverInstances.get(no);
}
}

实际上,对于多例模式,还有一种理解方式:同一类型的只能创建一个对象,不同类型的可以创建多个对象。这里的“类型”如何理解呢?

我们还是通过一个例子来解释一下,具体代码如下所示。在代码中,logger name 就是刚刚说的“类型”,同一个 logger name 获取到的对象实例是相同的,不同的 logger name 获取到的对象实例是不同的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Logger {
private static final ConcurrentHashMap<String, Logger> instances = new ConcurrentHashMap<>();
private Logger() {}
public static Logger getInstance(String loggerName) {
instances.putIfAbsent(loggerName, new Logger());
return instances.get(loggerName);
}
public void log() {
//...
}
}
//l1==l2, l1!=l3
Logger l1 = Logger.getInstance("User.class");
Logger l2 = Logger.getInstance("User.class");
Logger l3 = Logger.getInstance("Order.class");

这种多例模式的理解方式有点类似工厂模式。它跟工厂模式的不同之处是,多例模式创建的对象都是同一个类的对象,而工厂模式创建的是不同子类的对象。除此之外,实际上,枚举类型也相当于多例模式,一个类型只能对应一个对象,一个类可以创建多个对象。

------ 本文结束------